Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(9): e19690, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810103

ABSTRACT

The effectiveness of annual peak discharges under the anthropogenic impact and climate change has significance for disaster management and planning. Therefore, an attempt has been made to study the trend of annual maximum series (AMS) discharges and flood frequency in the Lower Mekong Basin (LMB). The AMS data of five stations in the LMB were procured from the Mekong River Commission for analyses of trends of the AMS and flood frequency. The Mann-Kendall test showed a significant decrease in the magnitude of annual peak floods for all the discharge gauging sites in the LMB. Likewise, the analysis of the annual discharge departure from the mean reveals noteworthy variations and departure (positive and negative) in the annual peak discharges. The goodness-of-fit (GoF) tests showed that Log-Pearson Type-III (LP-III) is the best distribution for AMS of the Mekong River than Gumbel Extreme Value Type-I (GEVI). Therefore, predicted discharges for different return periods and predicted recurrence intervals for average annual discharges (Qm), large floods (Qlf), and maximum annual peak discharge during the recording period (Qmax) by LP-III are trustworthy. The flood frequency curve specified that all the observed discharges were fairly on the best-fitted line and falls between upper and lower confidence limits. Inclusively, the results of the trend in annual peak discharges and flood frequency are consistent and can be used for water management, controlling flood disasters, and flood planning in the LMB.

2.
Environ Sci Pollut Res Int ; 30(46): 102531-102546, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37670092

ABSTRACT

The occurrence and severity of extreme precipitation events have been increasing globally. Although numerous projections have been proposed and developed for evaluating the climate change impacts, most models suffer from significant bias error due to the coarse resolution of the climate datasets, which affects the accuracy of the climate change assessment. Therefore, in this study, post-processing techniques (interpolation and bias correction methods) were adopted on the database for Policy Decision Making for Future Climate Change (d4PDF) model for extreme climatic flood events simulation in the Chao Phraya River Basin, Thailand, under + 4-K future climate simulation. Due to the limited number of the rain gages, the gradient plus inverse distance squared interpolation method (combination of multiple linear regression and distance weighting methods) was applied in this study. In the bias correction methods, the additional setting of monthly and seasonal periods was adjusted. The proposed bias correction approach deployed gamma distribution combined with generalized Pareto distribution setting with the seasonal period for the rainy season datasets, whereas only the gamma setting was applied with the monthly period during the dry season. The outcomes revealed that the proposed method could react to extreme rainfall events, expand dry days during dry season, and intensify rainfall amount during rainy season. The post-processing d4PDF trends of six sea surface temperature (SST) patterns (consists of 90 ensemble members) of two periods (near future: 2051-2070 and far future: 2091-2110) recorded the highest and lowest amounts of annual rainfalls of 4,450 mm/year in mid-stream of Nan River and 710 mm/year in the lower CPRB, respectively. Notably, the significant variances noted in the rainfall patterns among ensembles, demanding further investigation in future climate change, impact studies. The findings of the study provided novel insights on the importance of proper post-processing techniques for improving the robustness of d4PDF in climate change impacts assessment.

3.
PLoS One ; 15(1): e0226814, 2020.
Article in English | MEDLINE | ID: mdl-31914161

ABSTRACT

Precipitation, as a primary hydrological variable in the water cycle plays an important role in hydrological modeling. The reliability of hydrological modeling is highly related to the quality of precipitation data. Accurate long-term gauged precipitation in the Mekong River Basin, however, is limited. Therefore, the main objective of this study is to assess the performances of various gridded precipitation datasets in rainfall-runoff and flood-inundation modeling of the whole basin. Firstly, the performance of the Rainfall-Runoff-Inundation (RRI) model in this basin was evaluated using the gauged rainfall. The calibration (2000-2003) and validation (2004-2007) results indicated that the RRI model had acceptable performance in the Mekong River Basin. In addition, five gridded precipitation datasets including APHRODITE, GPCC, PERSIANN-CDR, GSMaP (RNL), and TRMM (3B42V7) from 2000 to 2007 were applied as the input to the calibrated model. The results of the simulated river discharge indicated that TRMM, GPCC, and APHRODITE performed better than other datasets. The statistical index of the annual maximum inundated area indicated similar conclusions. Thus, APHRODITE, TRMM, and GPCC precipitation datasets were considered suitable for rainfall-runoff and flood inundation modeling in the Mekong River Basin. This study provides useful guidance for the application of gridded precipitation in hydrological modeling in the Mekong River basin.


Subject(s)
Floods , Models, Theoretical , Rain/chemistry , Rivers/chemistry , Water Movements , Hydrology , Reproducibility of Results , Vietnam
4.
Front Microbiol ; 9: 2278, 2018.
Article in English | MEDLINE | ID: mdl-30374334

ABSTRACT

Fermentation has been used for centuries to produce food in South-East Asia and some foods of this region are famous in the whole world. However, in the twenty first century, issues like food safety and quality must be addressed in a world changing from local business to globalization. In Western countries, the answer to these questions has been made through hygienisation, generalization of the use of starters, specialization of agriculture and use of long-distance transportation. This may have resulted in a loss in the taste and typicity of the products, in an extensive use of antibiotics and other chemicals and eventually, in a loss in the confidence of consumers to the products. The challenges awaiting fermentation in South-East Asia are thus to improve safety and quality in a sustainable system producing tasty and typical fermented products and valorising by-products. At the end of the "AsiFood Erasmus+ project" (www.asifood.org), the goal of this paper is to present and discuss these challenges as addressed by the Tropical Fermentation Network, a group of researchers from universities, research centers and companies in Asia and Europe. This paper presents current actions and prospects on hygienic, environmental, sensorial and nutritional qualities of traditional fermented food including screening of functional bacteria and starters, food safety strategies, research for new antimicrobial compounds, development of more sustainable fermentations and valorisation of by-products. A specificity of this network is also the multidisciplinary approach dealing with microbiology, food, chemical, sensorial, and genetic analyses, biotechnology, food supply chain, consumers and ethnology.

5.
Appl Microbiol Biotechnol ; 102(17): 7239-7255, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29938320

ABSTRACT

Flavour and fragrance compounds are extremely important for food, feed, cosmetic and pharmaceutical industries. In the last decades, due to the consumer's increased trend towards natural products, a great interest in natural aroma compounds has arisen to the detriment of chemically synthesised ones. Recently, solid state fermentation (SSF) has been applied in the production of many metabolites. Aroma compounds can be produced by SSF with a higher yield compared to submerged fermentation (SmF). In SSF processes, aroma compounds can be produced in the solid matrix or in the headspace, but they can be lost or stripped when aeration is required. This review focuses on the production of aroma compounds by SSF processes with a special highlight on in situ systems to recover the volatiles released in the gaseous phase and stripped due to aeration. Following a brief presentation of specificities of SSF processes concerning the choice of microorganisms and the solid matrix used for the production of aroma compounds, bioreactor aspects, factors affecting production of aroma compounds and in situ gas phase aroma recovery systems in aerated SSF bioreactors are discussed.


Subject(s)
Bioreactors , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Fermentation , Gases/chemistry , Volatile Organic Compounds/isolation & purification , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL
...